CSCI 210: Computer Architecture
Lecture 23: MIPS addressing

Stephen Checkoway
Slides from Cynthia Taylor

Today’s Class

* Finishing floating point
* Addressing in MIPS

CS History: The Deep Space Kraken

Bug in the space simulation game Kerbal
Space Program prior to 2012 — T g

Al BN ﬁ’f"f‘ / g

The game moved ships through space

When ships moved at very high
velocities, floating point errors would
cause parts of the ship to be misaligned

The game would interpret this as those
parts breaking off the ship or colliding
with each other

Fixed it by moving space around the
ship, instead of the ship through space

Multiplication in base-10 scientific notation
Multiply 2.34 * 103 and 4.56 * 10°
Compute sign of the result
Add together exponents
Multiply fractions

Normalize the result and give it the appropriate sign

1.000, x 271 x —1.110, x 272

. -1.110, x 2
. —1.110, x 22

. —1.110, x 273

. -1.110, x 2°

Floating point multiplication algorithm

Input: two single-precision, floating point numbers x, and y

Output: x * y

1.
. Compute the sign of the result

2
3.
4. Multiply the significands as 64-bit integers and shift right by

If either xoryis O, return O

Add the exponents, unbiasing first

23 bits
Normalize the result and give it the appropriate sign

Why shift right?
“Multiply the significands as 64-bit integers and shift right by 23 bits”

Significands are 24 bit values (1 from the hidden bit, 23 from the
fraction bits)

The FP number below has a significand of
1.01000000000000000000000

sign exponent (8 bits) fraction (23 bits)
| | l |

0j0(1(1(1(1|1,0|0]0|1|{0f0O(0O|0|0|0|0|0O|O|O[O(O(0O|0|0|0|0O|0O|Of0OfO

31 30 23 22 (bit index) 0

Why shift right?

If we drop the binary point in the significand and treat this as a
binary integer we get 101000000000000000000000,

This va

Multip

ue is the significand times 223

ying sig, * 223 by sig, * 23 = (sig, * sig) * 2%

Shifting the result right by 23 divides that by 223 giving
(sig, * sig,) * 2°3

sign exponent (8 bits) fraction (23 hits)
| | l |

olol1]1|1]1|1|0lolol1|0lo]0lo]lo]0lo]olo|o]olo]ololo]olo]o]olo]o
31 30 23 22 (bit index) 0

FP Instructions in MIPS

FP hardware is coprocessor 1
— Adjunct processor that extends the ISA

Separate FP registers

— 32 single-precision: $f0, Sf1, ... $f31

— Paired for double-precision: $f0/Sf1, $f2/5f3, ...

FP instructions operate only on FP registers

— Programs generally don’t do integer ops on FP data, or vice versa

FP load and store instructions

— lwcl, 1dcl, swcl, sdcl
e eg, ldcl $f8, 32($sp)

— Psuedoinstructions are easier to read: |.s, I.d, s.s, s.d

FP Instructions in MIPS

* Single-precision arithmetic
—add.s, sub.s,mul.s, div.s
« eg,add.s $f0, $f1, $f6

* Double-precision arithmetic (operates on paired registers)

—add.d, sub.d, mul.d ,div.d
e eg,mul.d $f4, $f4, $f6

Questions about Floating Point?

* Floating point is a finite approximation of the infinite number
space

* This approximation leads to problems

Basic Question of Addressing

 How do we specify which data to operate on (or instruction to
jump to)?

e Complication:
— Instructions are 32 bits.
— Memory addresses are 32 bits.
— Datais in 32 bit words.

* Can never full specify address/data in a single instruction

Register Addressing

2. Register addressing

|::np rs |t | rd | ... |funct Registers

| ,_| Register

* Which register the data is in is specified in the instruction

e 32 registers =5 bits per register address

 Used in add, jr, etc

Immediate Addressing

1. Immediate addressing

op|rs | Immediate

Data is a constant within instruction

There is no memory address/register number, because we are
just writing the information in the instruction itself

16 bits, can specify numbers up to 21°-1 = 64 k

Used in addi, ori, etc

Base + Offset Addressing

3. Base addressing

np‘ rs ‘ rt ‘ Address Memory
[| '

Register | [:};} - - Halfword Word

l t

* Problem: 16 bits is not enough to address every word in
memory

 Solution: Add the 16-bit offset to the 32-bit address within a
register (the base)

e Usedin lw, sw

Branch and Jump: Recall

* Recall the basic instruction cycle
— IR = Memory[PC]
—PC=PC+4

* Both branch and jump instructions change the value of the
program counter

PC-relative Addressing

4. PC-relative addressing

:}pl rs l rt I Address Memory

PC Word

)
__/

* Problem: Cannot hold a 32-bit memory address in a single 32-bit
instruction (that also holds an opcode and two register numbers)

e Solution: Add an offset to the current value of the program counter

— Used only for branches in MIPS; used for both control flow and data
accesses in other architectures

In a program, the target of a branch (if/for) is

A. always within 21> instructions of the branch
B. usually within 2% instructions of the branch

C. usually more than 2'> instructions away from the branch

PC-relative Addressing in MIPS

4. PC-relative addressing

:;}pl rs l rt I Address Memory

<< 2

vy

+
PC | G"‘ Word
'

 Take 16 bit constant, shift left 2, add to value in PC

e Can access PC +/- 217 bytes = PC +/- 21> instructions

* Used in beq, bne

Why do we shift left by two?

4. PC-relative addressing

op I rs I rt I Address Memory
<< 2
n
“«Tf

| PC

Word

. We use the last two bits of the PC instead

. We only branch to instructions that are multiples of 4 words away
from the current instruction

. Instructions are words and addresses specify bytes, so the last two

bits of the address will always be 00 so they don’t need to be
encoded in the instruction

. None of the above

Which PC value in PC-relative addressing?

Ox42000 slt $to, $t1, $t2
0x42004 beg $t0, $zero, target
0x42008 addi $s0, $s0, 1
OxX?P??? target: ori $s0, $s0, 1

If the beq instruction has an immediate field of 0x0572, what is the address
of the target ori instruction?

PC is the address of the following instruction
target address: 0x42004 + 4 + (0x0572 << 2)

Consider the sequence of instructions:

0x480C bne

0x4810 add

0x4814 sub SeTe]
Ox4818 lw

If the immediate field of the bne instructionis 1,
which instruction is the target of the branch?

A. bne D. lw
B. add E. It’s an error because
C. sub addresses must be multiples

of 4

We can create an infinite loop using a beq
instruction with rs = rt = Szero and an
immediate field of

.4
Infinite loops are undefined behavior and so aren’t allowed

mo O wpE
o

Branching Far Away

If branch target is too far to encode with 16-bit offset, assembler
rewrites the code

beg $t0, Stl, far away

becomes
bne $t0, S$tl, not equal
J far away

not equal:

Questions on PC relative addressing?

Pseudo-direct Addressing

5. Pseudodirect addressing

op Address Memory

| PC | C—— Word

* Problem: Cannot hold 32 bits of a memory address in the 32-6
bits of an instruction holding an opcode

e Solution: Use the most significant bits of the PC for the missing
bits

Pseudo-direct Addressing

5. Pseudodirect addressing

ﬂp Address Mem.:.r!'.l

| PC | C—— Word
"

 We have 26 bits of address in the instruction

e Shift left by two

* Concatenate first four bits of PC + 4 with address
 Usedinj, jal

Consider a jal instruction at address 0xC8001074 whose 26-bit
address field has the value 0x0000003. What is the address of
the instruction the jal will jump to?

A. 0x00000003
B. OXCOOOOOO3 Psuedo direct addressing
* Shift left by two
C. OXCOOOOOO7 e Concatenate first four bits of PC + 4 with address
D. OxCO00000C
E. OxC800000C

Questions about addressing?

Reading

* Next lecture: Datapath

	Slide 1: CSCI 210: Computer Architecture Lecture 23: MIPS addressing
	Slide 3: Today’s Class
	Slide 4: CS History: The Deep Space Kraken
	Slide 5: Multiplication in base-10 scientific notation
	Slide 6: 1.0002 × 2–1 × –1.1102 × 2–2
	Slide 8: Floating point multiplication algorithm
	Slide 9: Why shift right?
	Slide 10: Why shift right?
	Slide 11: FP Instructions in MIPS
	Slide 12: FP Instructions in MIPS
	Slide 13: Questions about Floating Point?
	Slide 14: Basic Question of Addressing
	Slide 15: Register Addressing
	Slide 16: Immediate Addressing
	Slide 17: Base + Offset Addressing
	Slide 18: Branch and Jump: Recall
	Slide 19: PC-relative Addressing
	Slide 20: In a program, the target of a branch (if/for) is
	Slide 21: PC-relative Addressing in MIPS
	Slide 22: Why do we shift left by two?
	Slide 23: Which PC value in PC-relative addressing?
	Slide 24: Consider the sequence of instructions: 0x480C bne 0x4810 add 0x4814 sub 0x4818 lw If the immediate field of the bne instruction is 1, which instruction is the target of the branch?
	Slide 25: We can create an infinite loop using a beq instruction with rs = rt = $zero and an immediate field of
	Slide 26: Branching Far Away
	Slide 27: Questions on PC relative addressing?
	Slide 28: Pseudo-direct Addressing
	Slide 29: Pseudo-direct Addressing
	Slide 30
	Slide 31: Questions about addressing?
	Slide 32: Reading

